Rough Paths and PDEs

Organised by
Dan Crisan, London
Peter Friz, Berlin
Massimiliano Gubinelli, Paris

19th August – 25th August 2012

Abstract. The purpose of the Oberwolfach workshop "Rough Paths and PDEs" was to bring together these researchers, both young and senior, with the aim to promote progress in rough path theory, the connections with partial differential equations and its applications to numerical methods.

Introduction by the Organisers

The rough path theory, initiated by T. Lyons (workshop participant) in the nineties has had a profound influence on stochastic analysis; its single most important results is that solutions to stochastic differential equations can be solved pathwise and that the solution map is continuous (even locally Lipschitz) in rough path metric. This continuity property has since become the key in many striking applications, ranging from the Stroock-Varadhan support theorem in its as-of-yet strongest form to a new understanding of Hörmander's theory without Markovian structure. Much of this has been summarized in a recent monograph of Friz (workshop organizer). By applying and extending rough paths ideas to (stochastic) partial differential equations, a fruitful connection was established between the stability of (stochastic) flows in rough path sense and the stability properties of viscosity solutions to PDEs. In particular, large classes of SPDEs are reduced to (deterministic) partial differential equations driven by rough signals. This is closely related to the (essentially pathwise) Lions-Souganidis theory of stochastic viscosity solution. Souganidis was a participant at the workshop. A related set of new ideas is to introduce rough path stability in the context of backward (doubly)
stochastic differential equations (BSDEs): in a sense this amounts to non-linear Feynman-Kac formulae for rough partial differential equations. BSDEs have been introduced in the eighties by another workshop participant, Shige Peng. Another important application: stochastic filtering is concerned with the estimation of the conditional law of a Markov process, given observations of some function of it. Using the tools provided by rough paths one can show that it is essential to measure not just the observation process but also its associated area process. In other words, filtering has now become an outlet for rough paths developments. The following workshop participants are active in this area Diehl, Oberhauser, Friz and Crisan. Lastly, rough paths theory has had an importance influence in the area of numerical approximations of solutions of PDEs deterministic as well as stochastic. Litterer, Lyons and Crisan work on this topic.

The Mathematisches Forschungsinstitut Oberwolfach offered the ideal environment to enhance the synergy between the participant experts working in these related areas.
Workshop: Rough Paths and PDEs

Table of Contents

Youness Boutaib (joint with Terry Lyons)
Geometric Structure of the Reachability set ... 2497

Thomas Cass (joint with Martin Hairer, Christian Litterer, Samy Tindel)
Smoothness of the density for solutions to Gaussian RDEs 2498

Dan Crisan (joint with J-F Chassagneux and K. Manolarakis)
Solving semilinear partial differential equations using the cubature method ... 2503

Aurélien Deya
Convolutional rough paths ... 2504

Joscha Diehl (joint with P. Friz, P. Gassiat)
Controlled rough differential equations and applications to stochastic control ... 2505

Bruce Driver (joint with Len Gross, Laurent Sallof-Coste)
Holomorphic functions and subelliptic heat kernels over Lie groups 2507

Peter K. Friz
Examples from physics and economics where rough paths matter 2507

Benjamin Gess (joint with Peter Friz, Archil Gulisashvili, Sebastian Riedel)
Spatial rough path lifts of stochastic convolutions 2509

Massimiliano Gubinelli (joint with P. Imkeller, N. Perkowski)
A theory of controlled distributions .. 2513

Martin Hairer
Modelled distributions and the KPZ equation ... 2515

Ben Hambly (joint with Terry Lyons)
The signature of a path of bounded variation ... 2517

Yuzuru Inahama
Large deviation principle of Freidlin-Wentzell type for pinned diffusion measures ... 2518

Antoine Lejay (joint with Laure Coutin)
Perturbation of linear rough differential equations and applications 2521

Christian Litterer (joint with Thomas Cass and Terry Lyons)
Integrability and Tail Estimates for Gaussian Rough Differential Equations ... 2523
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andreas Neuenkirch</td>
<td>A conjecture on the optimal approximation of the fractional Lévy area</td>
<td>2524</td>
</tr>
<tr>
<td>Hao Ni (joint with Prof. Terry Lyons)</td>
<td>Expected signature of stochastic processes</td>
<td>2525</td>
</tr>
<tr>
<td>Syoiti Ninomiya (joint with Yusuke Kubo, Tokyo Institute of Technology)</td>
<td>A new semi-closed form solutions to some financial problems: a note on Bayer-Friz-Loeffen's work</td>
<td>2526</td>
</tr>
<tr>
<td>Harald Oberhauser (joint with Dan Crisan, Joscha Diehl, Peter Friz)</td>
<td>Rough path robustness in nonlinear filtering</td>
<td>2527</td>
</tr>
<tr>
<td>Anastasia Papavasiliou</td>
<td>Likelihood construction for discretely observed rough differential equations</td>
<td>2530</td>
</tr>
<tr>
<td>Sebastian Riedel (joint with Christian Bayer, Peter Friz, John Schoenmakers, Weijun Xu)</td>
<td>An upper bound for the distance between the signatures of two Gaussian processes and applications</td>
<td>2532</td>
</tr>
<tr>
<td>Samy Tindel (joint with F. Baudoin, M. Besalú, A. Kohatsu, E. Nualart, C. Ouyang)</td>
<td>Exponential bounds for solutions to rough differential equations driven by fractional Brownian motion</td>
<td>2534</td>
</tr>
<tr>
<td>Jan Maas and Hendrik Weber (joint with M. Hairer)</td>
<td>Approximating rough stochastic PDEs</td>
<td>2536</td>
</tr>
</tbody>
</table>