Invariants in Low-Dimensional Topology and Knot Theory

Organised by
Selman Akbulut, East Lansing
Stefan A. Bauer, Bielefeld
Louis H. Kauffman, Chicago
Vassily O. Manturov, Moscow

June 3rd – June 9th, 2012

Abstract. This meeting concentrated on topological invariants in low dimensional topology and knot theory. We include both three and four dimensional manifolds in our phrase “low dimensional topology”. The intent of the conference was to understand the reach of knot theoretic invariants into four dimensions, including results in Khovanov homology, variants of Floer homology and quandle cohomology and to understand relationships among categorification, topological quantum field theories and four dimensional manifold invariants as in particular Seiberg-Witten invariants.

Mathematics Subject Classification (2000): 55-xx, 57-xx.

Introduction by the Organisers

The purpose of this conference was to bring together people working in low-dimensional topology, both in knot theory and 3-manifold theory and in 4-manifold theory.

Here is a short comment on the combinatorial topology side of the topics. In 1969 John H. Conway published a version of the Alexander polynomial that involves nothing more than a recursion on diagrams controlled by a “skein formula” that expresses the difference between the polynomial for a knot with a given crossing, the same diagram with a switched crossing and the same diagram with the crossing replaced by connecting arcs that do not cross (a smoothing of the crossing). This remarkable reformulation of the Alexander polynomial remained a mystery for some years. In the late 1970’s people became interested in this relation again and, among others, Kauffman wrote a paper explaining the skein
relation approach of Conway in terms of the Seifert pairing of the knot. In the early 1980’s Kauffman found another model of the Alexander-Conway Polynomial as state summation related to Alexander’s original definition using a determinant of a matrix associated with the link diagram. Then in 1983, Vaughan Jones found a new and powerful polynomial invariant of knots and links that was quite different from the Alexander polynomial, but also satisfied a skein relation. This discovery of the Jones polynomial quickly led to a number of other skein-type invariants – the Homflypt polynomial and a two-variable Kauffman polynomial. Also Kauffman found a state sum model for the original Jones polynomial. After this initial combinatorial revolution in the knot theory, there came a big influx of algebra, first via von Neuman algebras and the Temperley Lieb algebra from Jones himself, then Hecke algebras and quantum groups (deformations of classical Lie algebras) and Hopf algebras with the work of Reshetikhin and Turaev. Then quantum field theory entered the picture with the work of Edward Witten and this led to the development of new invariants of three-manifolds, the formulation of Vassiliev invariants, work of Birman, Lin and Bar Natan and a mix of research problems that continues to the present day. In the 1990’s Kauffman and Goussarov, Polyak and Viro introduced virtual knot theory a generalization of classical knot theory to knots and links in thickend surfaces that has a simple diagrammatic extension from classical knot diagrams. Virtual knot theory continues in a very active way to the present day with contributions from many people and a first book on the subject by Manturov and Ilyutko, containing significant recent advances by Manturov and collaborators. In 1999 Misha Khovanov discovered an extension of the Kauffman bracket state sum model for the Jones polynomial to a graded homology theory such that the coefficients of the Jones polynomial become Euler characteristics of graded parts of the homology. The Khovanov homology of a knot is more powerful than the Jones polynomial of that knot and in fact it was shown in 2008 that the Khovanov homology detects the unknot, a property that is still unknown for the Jones polynomial. This “categorification” of the Jones polynomial was followed by a quite different categorification of the Alexander-Conway polynomial in the work of Oszváth and Szabó, and this work led to astonishing results such as a homological method to find the Seifert genus of a knot and, in both cases of these theories, a bridge between three manifolds and four manifolds. This sketch indicates the background of our conference on the side of combinatorial topology.

There were 51 participants, and 42 speakers among them. Participants without talks presented their results in various private communications during the discussion time or in the evening at the workshops or in an unofficial manner.

Several talks were organized for the whole audience; the other talks were held in two parallel sessions.

Nevertheless, all participants could share their results with everyone in formal or less formal workshops organized every day in the evening time. Research reports of the majority of participants were posted on the wall as well as on the conference webpage.
The main topics of the conference were:

- Recognition of the Unknot
- Virtual Knot Theory and Parity Theory
- Cobordisms and Concordance of Knots
- Finite-type invariants
- Heegaard-Floer Homology
- Exotic structures and Corks in 4-manifold Theory
- Seiberg-Witten Invariants, Gauge Theory
- 2-knots and their diagrams
- Khovanov homology theory
- Braid Theory
- Unknotting numbers and related topics in classical and virtual knot theory
- Quandles and Related Structures in Knot Theory
- Knot Mutations
- Knots and DNA
- Contact topology
- Topological Methods in Combinatorial Group Theory
- Calabi-Yau Manifolds
- Fibred Manifolds

In addition to the talks, three workshops were organized during the conference. A workshop on Virtual Knot Theory and parity in Low-Dimensional Topology was organized by V.O. Manturov. It was devoted to further applications of parity theory as well as to various unsolved problems, and others contributed to the discussion.

One workshop was devoted to the result of Chad Musick on the recognition of the unknot in a polynomial time.

One workshop was organized by Scott Carter on various algebraic generalizations of quandles possessing distributivity and associativity properties leading to invariants of knots, 2-knots and trivalent graphs.
Workshop: Invariants in Low-Dimensional Topology and Knot Theory

Table of Contents

Louis H. Kauffman
Virtual Knot Theory - Problems and Ideas 1695
Roger Fenn
Invariants and homology of biquandle classifying space 1698
Tim D. Cochran (joint with Chris W. Davis and Arumima Ray)
Injectivity of satellite operators in knot concordance 1698
Andriy Haydys
A new construction of the Fukaya–Seidel category 1701
András Juhász (joint with Peter Ozsváth, Dylan Thurston)
Naturality of Heegaard Floer homology 1702
Vassily Olegovich Manturov
Free Knots and Parity in Low-Dimensional Topology 1705
Hugh R. Morton
Mutant knots with symmetry .. 1707
Kouichi Yasui (joint with Selman Akbulut)
Cork twisting exotic Stein 4-manifolds 1709
Anna Beliakova
Towards a categorification of the universal sl(2) link invariant 1709
Cagri Karakurt
Corks and Exotic Smooth Structures of 4-Manifolds 1710
Slavik Jablan
Unlinking numbers of links and their families 1710
Andy Wand
Detecting tightness through open book decompositions 1713
Sofia Lambropoulou (joint with Maria Chlouveraki)
The 2-variable Jones polynomial and the invariants from the
Yokonuma–Hecke algebras .. 1714
Stefan Bauer
Seiberg-Witten maps and stable homotopy 1717
Chad Musick
Recognizing trivial links in polynomial time 1717
J. Scott Carter
 How to Fold a Manifold .. 1718

Selman Akbulut
 Gluck twisting 4-manifolds with odd intersection form 1719

Józef H. Przytycki
 Distributivity versus associativity in the homology theory of algebraic structures ... 1719

Chris Wendl (joint with Janko Latschev, Samuel Lisi, Jeremy Van Horn-Morris)
 Spinal open books and algebraic torsion in contact 3-manifolds 1722

Heather A. Dye
 Vassiliev invariants for virtual knots 1725

Refik Inanc Baykur
 Surface bundles, Lefschetz fibrations, and their (multi)sections 1728

Carmen Caprau
 On a cohomology theory for colored tangles 1729

Nikolai Saveliev
 Seiberg-Witten theory and four-dimensional homology cobordisms 1732

Kent E. Orr (joint with Gilbert Baumslag and Roman Mikhailov)
 Torus bundles, and the lower central series of metabelian groups 1732

Andrei Teleman
 Curves on class VII surfaces. A gauge theoretical approach for proving existence of a cycle 1734

Igor Nikonov
 Functorial maps and weak parities 1737

Matthew Hedden
 Recent progress on topologically slice knots 1738

Shelly L. Harvey
 Combinatorial Spatial Graph Floer Homology 1740

Aaron Kaestner (joint with Louis H. Kauffman)
 Parity Biquandles .. 1743

Yanki Lekili (joint with Maksim Maydanskiy)
 Floer theoretically essential tori in rational blowdowns 1744

Allison Henrich (joint with Tomas Boothby and Alexander Leaf)
 Minimal Diagrams of Free Knots 1745

Hang Wang (joint with Vassily O. Manturov)
 Markov Theorem for Free Links 1745
Denis Ilyutko

Graph-links and Bouchet graphs 1748

Weimin Chen

On Seifert fibered 4-manifolds 1751

Micah W. Chrisman

Stable Generalized Polyak Groups: An Approach to Finite-Type
Invariants of Virtual Knots .. 1752