Abstract. Control theory is an interdisciplinary field that is located at the crossroads of pure and applied mathematics with systems engineering and the sciences. Its range of applicability and its techniques evolve rapidly with new developments in communication systems and electronic data processing. Thus, in recent years networked control systems emerged as a new fundamental topic, which combines complex communication structures with classical control methods and requires new mathematical methods. A substantial number of contributions to this workshop was devoted to the control of networks of systems. This was complemented by a series of lectures on other current topics like fundamentals of nonlinear control systems, model reduction and identification, algorithmic aspects in control, as well as open problems in control.

Introduction by the Organisers

Control theory is now a classical field in mathematics which is permanently evolving due to new developments in the engineering sciences. The advent of new communication means like wireless signal transmission, or the internet has led to the development of networked control systems, which combine a possibly large number of classical control systems in a digital network. Control variables, measured variables and other signals are transmitted between the subsystems via communication channels. Properties of these channels like capacity and bandwidth, the protocol, or transmission delays and losses thus affect the possibility to control the system. On the other hand, wireless connections between distantly located parts
of a system offer new strategies for control and monitoring. New mathematical
questions which arise in this context are, for instance, related to the amount of
information needed to control a system, the role of the topology of the connecting
graph, the differences between event-driven and synchronized communication or
centralized and decentralized control, as well as the statistical properties of the
channel.

The field therefore covers a wide variety of topics, ranging from fundamental
mathematical aspects and new control paradigms in the sciences to real world engi-
neering applications of industrial relevance. In particular, it has deep connections
to different branches of pure and applied mathematics, including e.g. ordinary and
partial differential equations, operator theory, real and complex analysis, prob-
ability theory, numerical analysis, discrete mathematics, stochastics as well as
algebraic and differential geometry.

The workshop *Control Theory: Mathematical Perspectives on Complex Net-
worked Systems* brought together about 45 internationally active researchers from
Austria, Belgium, France, Germany, Israel, Italy, The Netherlands, Sweden, Swit-
zerland, the United Kingdom and the United States, with both a mathematical
and systems engineering background. In order to address the new challenges posed
by the new communication structures, a special focus of this workshop has been
on networked control systems. This was complemented by challenging systems en-
gineering topics. In all these talks, the interaction of mathematical methods from
nonlinear dynamics and control with those from discrete mathematics (especially
graph and information theory) played a crucial role. The program comprised 24
talks on the theory and applications of control theory. The lengths of the talks
were different, between 30 and 45 minutes, where always enough time (at least
about 10 minutes) was granted for the discussion. The lectures were organized
into rather coherent sessions on the topics:

- Networks and Control
- Fundamentals of Nonlinear Control Systems
- Model reduction and Identification
- Algorithmic Aspects in Control
- Fundamental Control Problems

In addition to these lectures and the very active discussions throughout the
workshop there was an informal open problem session on Tuesday evening, in which
10 participants presented open mathematical problems in control. Furthermore,
as a new format, we implemented poster sessions on Wednesday and Thursday
evening to have a more informal forum to discuss recent results. These sessions
were accompanied by ‘poster-teaser-sessions’, where each presenter of a poster
had about ten minutes to introduce the audience to the topic of the poster and
to answer first questions. In particular the younger participants used this chance
to present their work very actively. The extended abstracts of all lectures and
posters are collected in this report.

The traditional Wednesday afternoon walk to St. Roman was replaced by a
walk to Wolfach, where the participants enjoyed the exciting new MIMA-museum.
Workshop: Control Theory: Mathematical Perspectives on Complex Networked Systems

Table of Contents

David Angeli
 Dynamics of Chemical Reaction Networks .. 667

David Angeli (joint with A. Kountouriotis)
 A stochastic approach to control of refrigerator appliances for frequency regulation .. 668

Thanos Antoulas
 Model reduction of parametrized systems 669

Roger Brockett
 Some Mathematical Formulations of Problems in Network Control 670

Mathias Bürger (joint with Daniel Zelazo and Frank Allgöwer)
 Hierarchical clustering of dynamical networks using a saddle-point analysis .. 672

Fritz Colonius
 Minimal Bit Rates and Entropy for Stabilization 673

Gunther Dirr
 Ensemble Controllability of Bilinear Systems 674

Paul Fuhrmann
 On invariant subspaces and intertwining maps 676

Knut Graichen (joint with Bartosz Käpernick)
 Nonlinear MPC with systematic handling of a class of constraints 677

Lars Grüne
 Economic MPC and the role of exponential turnpike properties 678

Bernard Haasdonk (joint with Daniel Wirtz)
 Kernel Methods for Model Reduction of Parameterized Nonlinear Systems ... 681

Sandra Hirche (joint with Adam Molin)
 Optimal Event-based Control - The Extended Linear Quadratic Problem 683

Alberto Isidori (joint with Lorenzo Marconi)
 Post-processing internal models for robust nonlinear output regulation 685

Karl H. Johansson (joint with Farhad Farokhi and Cédric Langbort)
 On the Role of Plant Model Information in Large-scale Control Systems 688
Pia L. Kempker (joint with André C.M. Ran, Jan H. van Schuppen)
Coordination Control of Linear Systems (poster) 691

Arthur J. Krener (joint with Wei Kang)
Linear time invariant minimax filtering 692

Mircea Lazar, Rob H. Gielen
Necessary and sufficient dissipativity conditions for stability of
interconnected systems .. 693

Anders Lindquist (joint with Enrico Avventi and Bo Wahlberg)
ARMA Identification of Graphical Models 695

Jan Lunze
Event-based control: A state-feedback approach 696

Lorenzo Marconi (joint with Andrew Teel)
Hybrid Linear Regulation .. 697

Henk Nijmeijer, Jonatan Peña-Ramírez
Synchronization in networks with time-delay coupling: ‘the sympathy of
pendulum clocks and beyond’ ... 698

Pablo A. Parrilo (joint with Parikshit Shah)
An Optimal Controller Architecture for Poset-Causal Systems 702

Giorgio Picci (joint with Giulio Bottegal)
Generalized Factor Analysis Models .. 705

Anders Rantzer
Distributed Control of Positive Systems 706

Witold Respondek (joint with Shun-Jie Li)
Flatness of driftless systems equivalent to the canonical Cartan
distributions .. 707

Jacqueline M. A. Scherpen (joint with Thomas Voß)
Stability and stabilization of piezoelectric beams 710

Rodolphe Sepulchre (joint with Alexandre Mauroy)
A novel Lyapunov function for kick-synchronization models 713

Frederik Rüppel (joint with Uwe Helmke)
Circulant and Pseudo-circulant Control Systems 713

Georg S. Seyboth (joint with Frank Allgöwer)
Synchronization in networks of linear parameter-varying systems 715

Malcolm C. Smith
Classical Network Synthesis ... 716

Héctor J. Sussmann
Universal regularity results for open-loop optimal controls 717
Patrick Thiran (joint with Florence Bénézit, Martin Vetterli)
 From Gossip to Voting .. 718

Stephan Trenn
 Switched differential algebraic equations 721

Steffen Waldherr (joint with Frank Allgöwer, Elling W. Jacobsen, Stefan Streif)
 Robustness and adaptation of biological networks under kinetic perturbations ... 722

Jan C. Willems
 Open Stochastic Systems .. 723

Daniel Zelazo (joint with Simone Schuler and Frank Allgöwer)
 Performance and Design of Cycles in Consensus Networks 726