Abstract. Modern numerical methods for hyperbolic conservation laws rely on polynomials of high degree, mostly orthogonal polynomials, on triangular or quadrilateral meshes. Due to shocks stability is an issue and modern means of filtering like spectral viscosity is required. Additional TV-filters are needed in most cases as postprocessors and the choice of the solver for the differential equations to integrate in time is crucial. The workshop was organised to bring together researchers from different areas of mathematics in order to fuel the research on high-order efficient and robust numerical methods.

Introduction by the Organisers

The workshop Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws and their Use in Science and Engineering, organised by Rainer Ansorge (Hamburg), Hester Bijl (Delft), Andreas Meister (Kassel) and Thomas Sonar (Braunschweig) was held January 15th–January 21st, 2012. This meeting was well attended with 45 participants with broad geographic representation from many continents. This workshop was in a sense an experiment. Since modern numerical methods like Discontinuous Galerkin or Spectral Element Finite Difference methods are based on orthogonal polynomials on simplizes and use modal filters and many more mathematical devices from different areas of research we decided to invite renowned researchers from numerical methods for ODEs, image processing,
approximation theory, and numerical methods for hyperbolic conservation laws. Although there was some confusion in the beginning since the image processing people did not know in advance whether they were invited to the right conference or not these confusions could be washed away. At the end of the workshop we heard from several researchers that this was indeed an extraordinary successful workshop in which specialists from so different areas talked with each other for the first time.

The talks ranged from new Runge-Kutta solvers, new filters in image processing, Discontinuous Galerkin methods, Spectral Difference methods, Finite Difference operators, implicit solvers, and finite volume methods to the modeling of shocks, salt distribution in the baltic sea, a new model of atmospheric flow and its numerics, and many more. Discussions were lively and many different research areas met for the first time resulting in interesting talks and contacts.

The workshop was a tremendous success and we are looking forward to repeat this kind of conference in Oberwolfach again in a few years.
Workshop: Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws and their Use in Science and Engineering

Table of Contents

Rémi Abgrall (joint with Mario Ricchiuto, Dante de Santis)
Recent developments in very high order Residual Distribution Schemes for inviscid and viscous problems. .. 217

Philipp Birken (joint with Mark Haas, Gregor Gassner, Claus-Dieter Munz)
Fast implicit solvers for unsteady Navier-Stokes: 3D-DG 219

Michael Breuß
Discrete Flux-Corrected Transport and Applications in Image Processing 221

Hans Burchard
Analysing numerical mixing and dissipation for discretisations of the advection equation, with applications to ocean modelling 222

John Butcher (joint with Yousaf Habib, Adrian Hill)
Dealing with parasitic behaviour in G-symplectic integrators 225

Mark H. Carpenter
Energy-Stable Weighted Essentially Non-Oscillatory Finite-Difference Schemes ... 228

Alina Chertock (joint with Alexander Kurganov)
A Simple Eulerian Finite-Volume Method for Compressible Fluids in Domains with Moving Boundaries 231

Miloslav Feistauer (joint with Jan Česenek and Václav Kučera)
Discontinuous Galerkin method - a robust solver for compressible flow 233

Jiří Felcman (joint with Oto Havle, Libor Kadrnka)
Numerics of the shallow water equations 235

Ingenuín Gasser (joint with Maria Bauer, Elisabetta Felaco)
On one dimensional low Mach number applications 238

Gregor J. Gassner (joint with Andrea D. Beck, David Kopriva, Claus-Dieter Munz)
On the Accuracy of High Order Methods for Underresolved Multi-Scale Problem Simulations ... 239

Willem Hundsdorfer
IMEX Methods for Hyperbolic Systems with Stiff Relaxation Terms 240
Armin Iske (joint with Terhemen Aboiyar and Emmanuil H. Georgoulis)
Adaptive ADER Methods using Kernel-based Polyharmonic Spline
WENO Reconstruction .. 243

Barbara Lee Keyfitz
Some Reasons this Analyst Wants Better (High Order) Numerical
Solutions ... 246

Rupert Klein
Sound-proof model equations for atmospheric flows and associated
multiscale time integrators ... 248

Christian Klingenberg (joint with François Bouchut, Knut Waagan)
A robust numerical method for compressible MHD applied to astrophysical
flow simulations .. 249

Tom H. Koornwinder
Orthogonal polynomials in several variables potentially useful in pde 251

David A. Kopriva
Implementation and Efficiency of Discontinuous Galerkin Spectral
Element Methods for Fluid Flow Problems 254

Alexander Kurganov (joint with Yu Liu)
New Adaptive Artificial Viscosity Method for Hyperbolic Systems of
Conservation Laws ... 257

Mária Lukáčová-Medviďová (joint with Michael Dudzinski, Sebastian
Noelle, Anna Hundertmark)
Numerical modeling of some geophysical flows 259

Claus-Dieter Munz (joint with Alexander Filimon, Michael Dumbser,
Gregor Gassner)
Discontinuous Galerkin schemes based on reconstruction and defect
corrections ... 262

Jan Nordström
Nonlinear and Linear Boundary Conditions for Wave Propagation
Problems ... 265

Sigrun Ortleb (joint with Andreas Meister, Thomas Sonar)
Efficient Filtering Techniques for Stabilization and Postprocessing of
discontinuous Galerkin solutions to hyperbolic conservation laws 266

Joachim Rang
Time discretisation methods for the incompressible Navier-Stokes
equations ... 269

Michael Schäfer (joint with D. Sternel, M. Kornhaas, F. Flitz, S. Nowak)
Towards Numerical Simulation of Fluid-Structure-Acoustics Interaction 271

Eitan Tadmor (joint with Ulrik S. Fjordholm, Siddhartha Mishra)
ENO reconstruction and ENO interpolation are stable 272