Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis

Full-Text PDF (234 KB) | Book articles | Book details

pp: 319–347

DOI: 10.4171/186-1/14

Dispersion estimates for spherical Schrödinger equations with critical angular momentum

Markus Holzleitner[1], Aleksey Kostenko[2] and Gerald Teschl[3]

(1) Universität Wien, Austria
(2) Universität Wien, Austria
(3) Universität Wien, Austria and Erwin Schrödinger Institut, Wien, Austria

We derive a dispersion estimate for one-dimensional perturbed radial Schrödinger operators, where the angular momentum takes the critical value $l = –1/2$. We also derive several new estimates for solutions of the underlying differential equation and investigate the behavior of the Jost function near the edge of the continuous spectrum.

No keywords available for this article.