Contents

Introduction ... 1

1 Behavior near the boundary of solutions to the Dirichlet problem
for a second-order elliptic equation 7
 1.1 Capacitary modulus of continuity of a harmonic function 7
 1.2 Operator in divergence form with measurable bounded coefficients .. 11
 1.2.1 Notation and lemmas .. 11
 1.2.2 Estimates of the solution with finite energy integral 14
 1.2.3 Estimates for solutions with unbounded Dirichlet integral
 and the Phragmen–Lindelöf principle 17
 1.2.4 Nonhomogeneous boundary condition 18
 1.2.5 Nonhomogeneous equation 20
 1.3 Refined estimate for the modulus of continuity of a harmonic function 21
 1.4 Improvement of previous estimates for \(L \)-harmonic functions ... 32
 1.5 More notations and preliminaries 34
 1.6 \(L \)-harmonic functions vanishing on a part of the boundary ... 36
 1.7 Behaviour of \(L \)-harmonic functions at infinity and near
 a singular point .. 46
 1.8 Phragmén–Lindelöf type theorems 49
 1.9 \(L \)-harmonic measure and non-homogeneous Dirichlet data 51
 1.10 The Green function and solutions of the non-homogeneous equation . 56
 1.11 Continuity modulus of solutions and criterion of Hölder regularity
 of a point .. 60
 1.12 Sufficient conditions for Hölder regularity 63
 1.13 Comments to Chapter 1 ... 65

2 An analogue of the Wiener criterion for the Zaremba problem
for the Laplacian in a half-cylinder 67
 2.1 Formulation of the Zaremba problem 67
 2.2 Auxiliary assertions ... 69
 2.3 Estimates for solutions of the Zaremba problem 71
 2.4 Regularity criterion for the point at infinity 74
 2.5 Estimates for the Green function and for the harmonic measure
 of the Zaremba problem .. 81
 2.6 Comments to Chapter 2 ... 85

3 Wiener type test for the Zaremba problem
for degenerate elliptic operators in a half-cylinder 87
 3.1 Introduction .. 87
 3.2 Weighted function spaces and weak solutions 89
3.3 Change of variables .. 93
3.4 Regularity test .. 97
3.5 The capacity cap_T 102
3.6 The capacity cap_K 106
3.7 Comments to Chapter 3 112

4 Modulus of continuity of solutions to quasilinear elliptic equations 113
4.1 Preliminaries ... 113
4.2 Main result .. 125
4.3 Comments to Chapter 4 130

5 Discontinuous solution to the p-Laplace equation 133
5.1 Construction of a special solution 133
5.2 Asymptotic formula for the Hölder exponent 140
5.3 Behavior of solutions to the equation $\Delta_p u = 0$ 147
 5.3.1 Absence of Hölder continuity 147
 5.3.2 Absence of continuity 148
5.4 Comments to Chapter 5 151

6 Wiener test for higher-order elliptic equations 153
6.1 Introduction ... 153
6.2 Capacities and the L-capacitary potential 155
6.3 Weighted positivity of $L(\partial)$ 163
6.4 Further properties of the L-capacitary potential 166
6.5 Poincaré inequality with m-harmonic capacity 167
6.6 Proof of sufficiency in Theorem 6.1.2 169
6.7 Equivalence of two definitions of regularity 172
6.8 Regularity as a local property 173
6.9 Proof of necessity in Theorem 6.1.2 174
6.10 Proof of sufficiency in Theorem 6.1.1 176
6.11 Proof of necessity in Theorem 6.1.1 179
6.12 The biharmonic equation in a domain with inner cusp $(n \geq 8)$ 187
6.13 Comments to Chapter 6 190

7 Wiener test for the polyharmonic equation 191
7.1 Weighted positivity of $(-\Delta)^m$ 191
7.2 Local estimates ... 199
7.3 Pointwise estimates for the Green function 201
7.4 Comments to Chapter 7 203

8 Weighted positivity and Wiener regularity of a boundary point for the fractional Laplacian 205
8.1 Introduction ... 205
8.2 Notations and preliminaries 206
8.3 Weighted positivity of $(-\Delta)^\mu$ 208
8.4 Proof of Lemma 8.3.2 ... 209
8.5 Non-positivity .. 214
8.6 Local estimates .. 218
8.7 Regularity of a boundary point 224
8.8 Comments to Chapter 8 .. 226

9 Wiener type regularity of a boundary point for the 3D Lamé system ... 227
 9.1 Statement of results ... 227
 9.2 Proof of Theorem 9.1.1 .. 228
 9.3 Proof of Theorem 9.1.2 .. 240
 9.4 Comments to Chapter 9 .. 245

10 Boundedness of the gradient of a solution and Wiener test
 of order one for the biharmonic equation 247
 10.1 Introduction ... 247
 10.2 Integral identity and global estimate 250
 10.3 Local energy and \(L^2\) estimates 253
 10.4 Estimates for the Green function 258
 10.5 The capacity \(\text{Cap}_P\) .. 263
 10.6 1-Regularity of a boundary point 268
 10.7 Sufficient condition for 1-regularity 270
 10.8 Necessary condition for 1-regularity 276
 10.9 Examples and further properties of \(\text{Cap}_P\) and \(\text{Cap}\) 286
 10.10 Comments to Chapter 10 295

11 Boundedness of derivatives of solutions to the Dirichlet problem
 for the polyharmonic equation 297
 11.1 Introduction ... 297
 11.2 Integral inequalities and global estimate: the case of odd dimension.
 Part I: power weight .. 300
 11.3 Preservation of positivity for solutions of ordinary differential
 equations ... 309
 11.4 Integral inequalities and global estimate: the case of odd dimension.
 Part II: weight \(g\) .. 315
 11.5 Integral identity and global estimate: the case of even dimension.
 Part I: power-logarithmic weight 324
 11.6 Integral identity and global estimate: the case of even dimension.
 Part II: weight \(g\) .. 327
 11.7 Pointwise and local \(L^2\) estimates for solutions to the polyharmonic
 equation ... 338
 11.8 Green function estimates 344
 11.9 Estimates for solutions of the Dirichlet problem 353
 11.10 Comments to Chapter 11 355
12 Polyharmonic capacities and higher-order Wiener test 357
12.1 Introduction .. 357
12.2 Regularity of solutions to the polyharmonic equation 361
12.3 Higher-order regularity of a boundary point as a local property 368
12.4 The new notion of polyharmonic capacity 373
12.5 Sufficient condition for λ-regularity 383
 12.5.1 Poincaré-type inequalities .. 383
 12.5.2 Odd dimensions ... 390
 12.5.3 Even dimensions ... 396
12.6 Necessary condition for λ-regularity 397
 12.6.1 Fine estimates on the quadratic forms 397
 12.6.2 Scheme of the proof ... 402
 12.6.3 Main estimates. Bounds for auxiliary functions T and W
 related to polyharmonic potentials on the spherical shells 403
 12.6.4 Conclusion of the proof ... 416
12.7 Comments to Chapter 12 .. 418

Bibliography .. 419

General Index ... 429

Index of Mathematicians ... 431