Contents

Introduction vii

1 Preliminaries from measure theory 1
 1.1 Some basics 1
 1.2 Convergence of measures 3
 1.3 Convergence in measure of maps 6

2 The Lévy–Milman concentration phenomenon 9
 2.1 Observation of spheres 9
 2.2 mm-isomorphism and Lipschitz order 14
 2.3 Observable diameter 16
 2.4 Separation distance 19
 2.5 Comparison theorem for observable diameter 22
 2.6 Spectrum of Laplacian and separation distance 25
 2.7 Notes and remarks 27

3 Gromov–Hausdorff distance and distance matrix 29
 3.1 Net, covering number, and capacity 29
 3.2 Hausdorff and Gromov–Hausdorff distance 30
 3.3 Distance matrix 31
 3.4 Notes and remarks 33

4 Box distance 35
 4.1 Basics for the box distance 35
 4.2 Finite approximation 43
 4.3 Lipschitz order and box convergence 51
 4.4 Finite-dimensional approximation 55
 4.5 Infinite product, I 59
 4.6 Notes and remarks 63

5 Observable distance and measurement 65
 5.1 Basics for the observable distance 65
 5.2 N-measurement and nondegeneracy of the observable distance 68
 5.3 Convergence of N-measurements 72
 5.4 (N, R)-measurement 82
 5.5 Notes and remarks 88
6 The space of pyramids
 6.1 Tail and pyramid .. 89
 6.2 Weak Hausdorff convergence 91
 6.3 Weak convergence of pyramids 93
 6.4 Metric on the space of pyramids 97
 6.5 Notes and remarks 101

7 Asymptotic concentration 103
 7.1 Compactification of the space of ideal mm-spaces 103
 7.2 Infinite product, II 114
 7.3 Spheres and Gaussians 117
 7.4 Spectral concentration 120
 7.5 Notes and remarks 125

8 Dissipation .. 127
 8.1 Basics for dissipation 127
 8.2 Nondissipation theorem 131
 8.3 Notes and remarks 136

9 Curvature and concentration 137
 9.1 Fibration theorem for concentration 137
 9.2 Wasserstein distance and curvature-dimension condition 143
 9.3 Stability of the curvature-dimension condition 149
 9.4 k-Lévy family 160
 9.5 Concentration of Alexandrov spaces 169
 9.6 Notes and remarks 174

Bibliography .. 175

Index .. 179