Contents

1 Introduction to Spectral Geometry

2 Detailed introduction to abstract spectral theory
 2.1 Linear operators
 2.1.1 Bounded operators
 2.1.2 Lax–Milgram theorem
 2.1.3 Unbounded operators
 2.2 Closed operators
 2.3 Adjoint operators
 2.3.1 Introduction
 2.3.2 Symmetry and self-adjointness
 2.3.3 An important result concerning self-adjoint operators
 2.4 Spectrums and resolvent set
 2.4.1 Spectrum versus point spectrum
 2.4.2 The self-adjoint case
 2.5 Spectral theory of compact operators
 2.5.1 The notion of compact operators
 2.5.2 Algebraic properties of compact operators
 2.5.3 Main spectral theorem for compact self-adjoint operators
 2.5.4 A proof using the Riesz–Schauder theory
 2.6 The spectral theorem multiplication operator form for unbounded operators on a Hilbert space
 2.6.1 Spectral theorem multiplication operator form
 2.6.2 Functional calculus
 2.6.3 Functional calculus in Quantum Mechanics
 2.7 Some complements on operators theory
 2.7.1 Closable operators
 2.7.2 Unbounded operators with compact resolvents
 2.7.3 Numerical range and applications
 2.8 Exercises

3 The Laplacian on a compact Riemannian manifold
 3.1 Basic Riemannian Geometry
 3.1.1 Differential Geometry: conventions and notations
 3.1.2 Riemannian manifolds and examples
 3.1.3 Metric structure and geodesics on a Riemannian manifold
 3.1.4 Curvatures on a Riemannian manifold
 3.1.5 Integration on a Riemannian manifold

Contents

3.2 Analysis on manifolds ... 66
3.2.1 Distributions on a Riemannian manifold 66
3.2.2 Sobolev spaces on a Riemannian manifold 67
3.2.3 The Laplacian operator and the Green formula 68
3.3 Exercises .. 69

4 Spectrum of the Laplacian on a compact manifold 71
4.1 Physical examples ... 71
4.1.1 The wave equation on a string 71
4.1.2 The heat equation ... 72
4.1.3 The Schrödinger equation 73
4.2 A class of spectral problems 75
4.2.1 The closed eigenvalue problem 75
4.2.2 The Dirichlet eigenvalue problem 75
4.2.3 The Neumann eigenvalue problem 76
4.2.4 Other problems ... 76
4.3 Spectral theorem for the Laplacian 76
4.4 A detailed proof by a variational approach 78
4.4.1 Variational generic abstract eigenvalue problem 78
4.4.2 The closed eigenvalue problem 81
4.4.3 The Dirichlet eigenvalue problem 84
4.4.4 The Neumann eigenvalue problem 87
4.4.5 A remark on the variational formulation 89
4.5 The minimax principle and applications 90
4.5.1 A physical example 90
4.5.2 The minimax theorem 91
4.5.3 Properties of the first eigenvalue 95
4.5.4 Monotonicity domain principle 97
4.5.5 A perturbation of metric result 98
4.6 Complements: The Schrödinger operator and the Hodge–de Rham Laplacian ... 100
4.6.1 The Schrödinger operator 100
4.6.2 The Hodge–de Rham Laplacian 102

5 Direct problems in spectral geometry 107
5.1 Explicit calculation of the spectrum 107
5.1.1 Flat tori ... 107
5.1.2 Rectangular domains with boundary conditions 109
5.1.3 Spheres ... 109
5.1.4 Harmonic oscillator 110
5.2 Qualitative properties of the spectrum 113
5.2.1 From the bottom of the spectrum 113
5.2.2 . . . to the large eigenvalues: the Weyl formula 117