Contents

1 Some model equations 1
 1.1 The Yamabe equation ... 1
 1.2 The KGMP and SP systems 4
 1.3 The Einstein-scalar field Lichnerowicz equation 10

2 Basic variational methods 14
 2.1 Some notation and basic facts 14
 2.2 The variational method by minimization 15
 2.3 The variational method based on the mountain pass lemma 21
 2.4 A few words on the Einstein-scalar field Lichnerowicz equation ... 27
 2.5 Solving critical equations.1 30
 2.6 Playing with symmetries – The case of large potentials 37
 2.7 Solving critical equations.2 38
 2.8 Regularity theory ... 42

3 The L^p and H^1-theories for blow-up 48
 3.1 The L^p-theory for blow-up 49
 3.2 The H^1-theory for blow-up 54
 3.3 Proof of Theorem 3.3 .. 58
 3.4 Proof of Lemma 3.5 .. 63
 3.5 Remarks on Theorem 3.3 76

4 Blowing-up solutions in the critical case 83
 4.1 The sphere model case .. 83
 4.2 Variations on the above theme 86
 4.3 Infinite energy solutions.1 92
 4.4 The low-dimensional case 96
 4.5 Weakly critical versus critical potentials 99
 4.6 The finite dimensional reduction method in few words 102
 4.7 Blowing-up solutions in arbitrary manifolds 104
 4.8 Infinite energy solutions.2 108
 4.9 The Yamabe equation in high dimensions 109
 4.10 Blow-up type configurations 110
 4.11 The model Equations .. 111

5 An introduction to elliptic stability 113
 5.1 A first insight into elliptic stability 114
 5.2 Stability and standing waves for NLS and NKG 119
 5.3 The subcritical case of stationary Schrödinger’s equations ... 120
5.4 Various notions of stability in the critical case 122
5.5 The supinf 3-dimensional inequality 125

6 Bounded stability 129
6.1 Blow-up theory in the one-bubble model case 131
6.2 A Riemannian version of the Pohozaev identity 147
6.3 Blow-up theory in the one-bubble model case (continued) 149
6.4 Proof of Theorem 6.1 . 162
6.5 Proof of Theorem 6.3 . 173
6.6 The Brézis-Li uniqueness result . 175
6.7 Compactness for the Yamabe equation and Theorem 6.2 177

7 The C^0-theory for blow-up 180
7.1 A first set of pointwise estimates . 182
7.2 Proof of the upper estimate in Theorem 7.1 198
7.3 Basic computations . 229
7.4 Proof of Theorem 7.2 and of the lower estimate in Theorem 7.1 237
7.5 Coercivity is a necessary assumption . 243

8 Analytic stability 245
8.1 Proof of Theorems 8.1 and 8.2 in the conformally flat case 247
8.2 The range of influence of blow-up points 255
8.3 Proof of Theorems 8.1 and 8.2 in the general case 266
8.4 Blow-up in the 6-dimensional case . 279
8.5 The model Equations . 281

Bibliography 285