Contents

Introduction ix

I Algebras and modules 1
 1 Algebras 1
 2 Representations of algebras and modules 12
 3 The Jacobson radical 30
 4 The Krull–Schmidt theorem 41
 5 Semisimple modules 45
 6 Semisimple algebras 56
 7 The Jordan–Hölder theorem 67
 8 Projective and injective modules 73
 9 Hereditary algebras 93
 10 Nakayama algebras 100
 11 The Grothendieck group and the Cartan matrix ... 105
 12 Exercises 109

II Morita theory 123
 1 Categories and functors 123
 2 Bimodules 125
 3 Tensor products of modules 133
 4 Adjunctions and natural isomorphisms 140
 5 Progenerators 151
 6 Morita equivalence 157
 7 Morita–Azumaya duality 175
 8 Exercises 188

III Auslander–Reiten theory 203
 1 The radical of a module category 203
 2 The Harada–Sai lemma 207
 3 The space of extensions 209
 4 The Auslander–Reiten translations 232
 5 The Nakayama functors 247
 6 The Auslander–Reiten formulas 252
 7 Irreducible and almost split homomorphisms 257
 8 Almost split sequences 269
 9 The Auslander–Reiten quiver 282
 10 The Auslander theorem 301
11 The Bautista–Smalø theorem ... 312
12 Exercises .. 314

IV Selfinjective algebras .. 332
1 The Frobenius theorem .. 332
2 The Brauer–Nesbitt–Nakayama theorems 336
3 Frobenius algebras .. 345
4 Symmetric algebras ... 355
5 Simple algebras .. 368
6 The Nakayama theorems .. 375
7 Non-Frobenius selfinjective algebras 386
8 The syzygy functors .. 392
9 The higher extension spaces ... 402
10 Periodic modules ... 414
11 Periodic algebras .. 427
12 The Green–Snashall–Solberg theorems 442
13 Dynkin and Euclidean graphs ... 447
14 Canonical mesh algebras of Dynkin type 452
15 The Riedtmann–Todorov theorem 455
16 Exercises .. 470

V Hecke algebras ... 489
1 Finite reflection groups .. 489
2 Coxeter graphs .. 499
3 The Coxeter theorems ... 507
4 The Iwahori theorem ... 515
5 Hecke algebras ... 528
6 Exercises .. 533

VI Hopf algebras ... 539
1 Coalgebras .. 539
2 Hopf algebras ... 552
3 The Larson–Sweedler theorems ... 584
4 The Radford theorem ... 595
5 The Fischman–Montgomery–Schneider formula 609
6 The module category .. 616
7 Exercises .. 630

Bibliography ... 637

Index ... 645