Contents

Preface vii

1 Prerequisites 1

2 Algebraic Sets, Morphisms, and Rational Maps 12
 2.1 Review of topology 12
 2.2 The correspondences V and I 15
 2.3 Morphisms 21
 2.4 Rational maps 24
 2.5 Projective algebraic sets 30
 2.6 Rational maps and birational equivalence 35
 2.7 Complements and exercises 43

3 Geometric Properties of Algebraic Varieties 51
 3.1 Tangent space, singularities and dimension 51
 3.2 Independence of polynomials. Essential parameters 62
 3.3 Dimension of a projective variety 68
 3.4 Order of a projective variety, tangent cone and multiplicity 72

4 Rudiments of Elimination Theory 83
 4.1 Resultant of two polynomials 83
 4.2 Bézout’s theorem for plane curves 89
 4.3 More on intersection multiplicity 90
 4.4 Elimination of several variables 99
 4.5 Bézout’s theorem 102

5 Hypersurfaces in Projective Space 106
 5.1 Generalities on hypersurfaces 106
 5.2 Multiple points of a hypersurface 108
 5.3 Algebraic envelopes 115
 5.4 Polarity with respect to a hypersurface 119
 5.5 Quadrics in projective space 126
 5.6 Complements on polars 134
 5.7 Plane curves 140
 5.8 Surfaces in \mathbb{P}^3 150
Contents

6 Linear Systems 166

6.1 Linear systems of hypersurfaces 167
6.2 Hypersurfaces of a linear system that satisfy given conditions . 168
6.3 Base points of a linear system 170
6.4 Jacobian loci .. 177
6.5 Simple, composite, and reducible linear systems 182
6.6 Rational mappings 185
6.7 Projections and Veronese varieties 189
6.8 Blow-ups .. 192

7 Algebraic Curves 197

7.1 Generalities ... 197
7.2 The genus of an algebraic curve 201
7.3 Curves on a quadric 212
7.4 Rational curves ... 218
7.5 Exercises on rational curves 225

8 Linear Series on Algebraic Curves 238

8.1 Divisors on an algebraic curve with ordinary singularities 239
8.2 Linear series ... 246
8.3 Linear equivalence 248
8.4 Projective image of linear series 251
8.5 Special linear series 256
8.6 Adjoints and the Riemann–Roch theorem 261
8.7 Properties of the canonical series and canonical curves 270
8.8 Some results on algebraic correspondences between two curves . . 274
8.9 Some remarks regarding moduli 277
8.10 Complements and exercises 284

9 Cremona Transformations 292

9.1 Quadratic transformations between planes 292
9.2 Resolution of the singularities of a plane algebraic curve 297
9.3 Cremona transformations between planes 307
9.4 Cremona transformations between projective spaces of
 dimension 3 ... 317
9.5 Exercises .. 322

10 Rational Surfaces 340

10.1 Planar representation of rational surfaces 340
10.2 Linearly normal surfaces and their projections 349
10.3 Surfaces of minimal order 354
10.4 The conics of a plane as points of \mathbb{P}^5 and the Veronese surface . 360
10.5 Complements and exercises 364
11 Segre Varieties 386
 11.1 The product of two projective lines 386
 11.2 Segre morphism and Segre varieties 389
 11.3 Segre product of varieties 392
 11.4 Examples and exercises ... 395

12 Grassmann Varieties 399
 12.1 The lines of \(\mathbb{P}^3 \) as points of a quadric in \(\mathbb{P}^5 \) .. 399
 12.2 Complexes of lines in \(\mathbb{P}^3 \) 403
 12.3 Congruences of lines in \(\mathbb{P}^3 \) 407
 12.4 Ruled surfaces in \(\mathbb{P}^3 \) 408
 12.5 Grassmann coordinates and Grassmann varieties 414
 12.6 Further properties of \(G(1,n) \) and applications 422

13 Supplementary Exercises 433
 13.1 Miscellaneous exercises ... 433
 13.2 Further problems .. 454
 13.3 Exercises on linear series on curves 457

Bibliography 467

Index 475