Contents

Foreword .. v
Introduction 1
Preview .. 13
 A recipe 13
 Contents 31
 Notation 36

I Point Processes 41
 1 An intuitive approach 41
 1.1 A brief shower 41
 1.2 Sample cloud mixtures 43
 1.3 Random sets and random measures 44
 1.4 The mean measure 45
 1.5* Enumerating the points 46
 1.6 Definitions 47
 2 Poisson point processes 48
 2.1 Poisson mixtures of sample clouds .. 48
 2.2 The distribution of a point process 49
 2.3 Definition of the Poisson point process 50
 2.4 Variance and covariance 51
 2.5* The bivariate mean measure 52
 2.6 Lévy processes 54
 2.7 Superpositions of zero-one point processes 56
 2.8 Mappings 58
 2.9* Inverse maps 58
 2.10* Marked point processes 62
 3 The distribution 63
 3.1 Introduction 63
 3.2* The Laplace transform 64
 3.3 The distribution 65
 3.4* The distribution of simple point processes 67
 4 Convergence 69
 4.1 Introduction 69
 4.2 The state space 70
 4.3 Weak convergence of probability measures on metric spaces . 72

Starred sections may be skipped on a first reading
4.4 Radon measures and vague convergence 76
4.5 Convergence of point processes 78
5 Converging sample clouds 81
 5.1 Introduction .. 81
 5.2 Convergence of convex hulls, an example 83
 5.3 Halfspaces, convex sets and cones 84
 5.4 The intrusion cone 87
 5.5 The convergence cone 89
 5.6* The support function 92
 5.7 Almost-sure convergence of the convex hulls 93
 5.8 Convergence to the mean measure 96

II Maxima .. 100
 6 The univariate theory: maxima and exceedances 100
 6.1 Maxima .. 100
 6.2 Exceedances 101
 6.3 The domain of the exponential law 101
 6.4 The Poisson point process associated with the limit law 102
 6.5* Monotone transformations 104
 6.6* The von Mises condition 105
 6.7* Self-neglecting functions 108
 7 Componentwise maxima 110
 7.1 Max-id vectors 111
 7.2 Max-stable vectors, the stability relations 112
 7.3 Max-stable vectors, dependence 114
 7.4 Max-stable distributions with exponential marginals on \((-\infty, 0)\) .. 117
 7.5* Max-stable distributions under monotone transformations 119
 7.6 Componentwise maxima and copulas 121

III High Risk Limit Laws 123
 8 High risk scenarios 123
 8.1 Introduction 123
 8.2 The limit relation 125
 8.3 The multivariate Gaussian distribution 126
 8.4 The uniform distribution on a ball 128
 8.5 Heavy tails, returns and volatility in the DAX 130
 8.6 Some basic theory 131
 9 The Gauss-exponential domain, rotund sets 135
 9.1 Introduction 136
Contents

9.2 Rotund sets ... 138
9.3 Initial transformations 140
9.4 Convergence of the quotients 143
9.5 Global behaviour of the sample cloud 146

10 The Gauss-exponential domain, unimodal distributions 147
10.1 Unimodality ... 147
10.2* Caps ... 149
10.3* L^1-convergence of densities 152
10.4 Conclusion ... 154

11 Flat functions and flat measures 156
11.1 Flat functions ... 156
11.2 Multivariate slow variation 157
11.3 Integrability .. 159
11.4* The geometry 160
11.5 Excess functions 166
11.6* Flat measures 167

12 Heavy tails and bounded vectors 170
12.1 Heavy tails ... 170
12.2 Bounded limit vectors 173

13 The multivariate GPDs 176
13.1 A continuous family of limit laws 176
13.2 Spherical distributions 178
13.3 The excess measures and their symmetries 179
13.4 Projection ... 180
13.5 Independence and spherical symmetry 180

IV Thresholds .. 182

14 Exceedances over horizontal thresholds 183
14.1 Introduction .. 183
14.2 Convergence of the vertical component 185
14.3* A functional relation for the limit law 186
14.4* Tail self-similar distributions 187
14.5* Domains of attraction 190
14.6 The Extension Theorem 192
14.7 Symmetries .. 193
14.8 The Representation Theorem 195
14.9 The generators in dimension d = 3 and densities 196
14.10 Projections .. 198
14.11 Sturdy measures and steady distributions 200
14.12 Spectral stability 203
14.13 Excess measures for horizontal thresholds 204
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.14</td>
<td>Normalizing curves and typical distributions</td>
<td>205</td>
</tr>
<tr>
<td>14.15</td>
<td>Approximation by typical distributions</td>
<td>209</td>
</tr>
<tr>
<td>15</td>
<td>Horizontal thresholds – examples</td>
<td>211</td>
</tr>
<tr>
<td>15.1</td>
<td>Domains for exceedances over horizontal thresholds</td>
<td>211</td>
</tr>
<tr>
<td>15.2</td>
<td>Vertical translations</td>
<td>211</td>
</tr>
<tr>
<td>15.3</td>
<td>Cones and vertices</td>
<td>218</td>
</tr>
<tr>
<td>15.4</td>
<td>Cones and heavy tails</td>
<td>222</td>
</tr>
<tr>
<td>15.5*</td>
<td>Regular variation for matrices in A^h</td>
<td>227</td>
</tr>
<tr>
<td>16</td>
<td>Heavy tails and elliptic thresholds</td>
<td>230</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>230</td>
</tr>
<tr>
<td>16.2</td>
<td>The excess measure</td>
<td>235</td>
</tr>
<tr>
<td>16.3</td>
<td>Domains of elliptic attraction</td>
<td>240</td>
</tr>
<tr>
<td>16.4</td>
<td>Convex hulls and convergence</td>
<td>243</td>
</tr>
<tr>
<td>16.5</td>
<td>Typical densities</td>
<td>245</td>
</tr>
<tr>
<td>16.6</td>
<td>Roughening and vague convergence</td>
<td>247</td>
</tr>
<tr>
<td>16.7</td>
<td>A characterization</td>
<td>251</td>
</tr>
<tr>
<td>16.8*</td>
<td>Interpolation of ellipsoids, and twisting</td>
<td>256</td>
</tr>
<tr>
<td>16.9</td>
<td>Spectral decomposition, the basic result</td>
<td>258</td>
</tr>
<tr>
<td>17</td>
<td>Heavy tails – examples</td>
<td>263</td>
</tr>
<tr>
<td>17.1</td>
<td>Scalar normalization</td>
<td>264</td>
</tr>
<tr>
<td>17.2</td>
<td>Scalar symmetries</td>
<td>268</td>
</tr>
<tr>
<td>17.3*</td>
<td>Coordinate boxes</td>
<td>273</td>
</tr>
<tr>
<td>17.4</td>
<td>Heavy and heavier tails</td>
<td>275</td>
</tr>
<tr>
<td>17.5*</td>
<td>Maximal symmetry</td>
<td>278</td>
</tr>
<tr>
<td>17.6*</td>
<td>Stable distributions and processes</td>
<td>282</td>
</tr>
<tr>
<td>17.7*</td>
<td>Elliptic thresholds</td>
<td>285</td>
</tr>
<tr>
<td>18</td>
<td>Regular variation and excess measures</td>
<td>295</td>
</tr>
<tr>
<td>18.1</td>
<td>Regular variation</td>
<td>295</td>
</tr>
<tr>
<td>18.2</td>
<td>Discrete skeletons</td>
<td>299</td>
</tr>
<tr>
<td>18.3*</td>
<td>Regular variation in A^+</td>
<td>300</td>
</tr>
<tr>
<td>18.4</td>
<td>The Meerschaert spectral decomposition</td>
<td>304</td>
</tr>
<tr>
<td>18.5</td>
<td>Limit theory with regular variation</td>
<td>312</td>
</tr>
<tr>
<td>18.6</td>
<td>Symmetries</td>
<td>314</td>
</tr>
<tr>
<td>18.7*</td>
<td>Invariant sets and hyperplanes</td>
<td>316</td>
</tr>
<tr>
<td>18.8</td>
<td>Excess measures on the plane</td>
<td>318</td>
</tr>
<tr>
<td>18.9</td>
<td>Orbits</td>
<td>320</td>
</tr>
<tr>
<td>18.10*</td>
<td>Uniqueness of extensions</td>
<td>326</td>
</tr>
<tr>
<td>18.11*</td>
<td>Local symmetries</td>
<td>329</td>
</tr>
<tr>
<td>18.12</td>
<td>Jordan form and spectral decompositions</td>
<td>333</td>
</tr>
<tr>
<td>18.13</td>
<td>Lie groups and Lie algebras</td>
<td>336</td>
</tr>
<tr>
<td>18.14</td>
<td>An example</td>
<td>344</td>
</tr>
<tr>
<td>Contents</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>V Open problems</td>
<td>348</td>
<td></td>
</tr>
<tr>
<td>19 The stochastic model</td>
<td>349</td>
<td></td>
</tr>
<tr>
<td>20 The statistical analysis</td>
<td>356</td>
<td></td>
</tr>
<tr>
<td>Bibliography</td>
<td>361</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>369</td>
<td></td>
</tr>
</tbody>
</table>